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When using a numerical method of approximating the value of 
b 

the definite integral    5 f(x)dx,    it is  of course very Important 
a 

that one knows the character of the integrand) does    f(x)    or its 

derivative have any singularities in the closed interval    [a,b], 

and, if so, what type of singularities are present?    The answers 

to these questions will determine the type of quadrature formula 

which should be used. 

In the case of a one-dimensional integral with a reasonably 

simple integrand,   one can usually determine fairly easily whether 

or not a singularity is present and - perhaps with more difficulty 

the character of the singularity.    Sometimes  the singularity may 

be removed by a change of variables, so that a standard non- 

singular type quadrature formula may be used.    In other cases  one 

uses a generalized Gauss  formula (or similar formula with other 

spacing)  which has been derived using a proper weighting function 

for the singularity in question. 

In the case of two-dimensional integrals,  it is  easier to be 

misled by one's intuition.    With the advent of high-speed digital 

computers,  it has become  the tendency to ask for general computer 

programs which will integrate any "reasonable"  function.    Multiple 

integrals are usually treated as  repeated simple integrals,   (so 

that one-dimensional quadrature formulas are used two or more 

times).     It is the purpose of these notes  to give some simple 

examples  of multiple integrals which show some of the difficulties 



which may arise.    Also some  formulas will be given to use on singular 

Integrals of the types 

h    h 
J   5 
0    0 

JlliZl 
■s/x    + y 

dxdy 

and 

h     h r-s =• 
5    5    InVx^ + y^ F(x,y)dxdy 
0    0 

which occur from time to time in physical problems.    In the  three 

appendices,  the formulas discussed  in the text are collected for 

ready reference.    No formal  expressions  for error terms associated 

with the formulas  of Appendix II  ani Appendix III  are given. 

§1.    Examples In which the integrand is non-singular. 

Example 1;     Consider    5  i F(x,y)dxdy,    where    F(x,y)   E 1    and 
A 2 where    A    is  the first quadrant area enclosed by the curve    y = 1  - x  . 

(See Figure l). 

Figure  1 



The multiple integral may be written as an iterated integral in 

either of two ways: 

If  ^    1 
= 55        dx 

o Lo J 
dy 

ir i-x*   "I 
1=55        dy    dx 

(1.1) 

(1.2) 

With either form,   one can easily perform the integrations analytically 

and arrive at  the exact answer    I  = 2/3«     Since    F(x,y)     is  such a smooth 

function (identically 1),   one might suspect at  first sight  that (l.l)   or 

(1.2)   could be  evaluated quite well by use of Simpson's  rule.     This was 

actually programmed  on a machine.     In both cases   the inner integrals 

were evaluated by using a 5-point Simpson formula.     The second integra- 

tion was also performed using Simpson's   rule,  and it was  tried several 

times using different integration step lengths.     The  results  are given 

in Table 1. 

Number of Points Used 
In Outer Integration 

Formula 

5 
9 
17 
33 
65 

129 
257 

Numerical Result 
Problem (l.l) 

.65652626 

.66307927 

.66539809 

.66621795 

.6665078^ 

.666609^ 

.6666UU6 

Numerical Result 
Problem (1.2) 

.66666668 

.66666667 

.66666676 

.66666672 

.66666688 

.66666813 

.66666923 

Table Is    Results (using Simpson's Rule)   to evaluate Integral in (l.l) 
and  (1.2) 

Comments on the results;    It is seen that for problem (1.2)   Simpson's 

rule gives very close  to the correct answer 2/3«    As more points are 

taken,   the results do get poorer,  but this  is  caused  entirely by round- 



off error. 

In the case  of problem (l.l), Simpson's  rule gives  results which 

are quite poor.     The results do get better as  more points  are  taken, 

but if five-place accuracy were desired,   many more  than  the    257 *  5  =  1275 

points would be  required;  it is obvious  by looking at the differences, 

caused by round-off in problem (1.2)   that round-off errors would also 

"take over"   in problem (l.l)   before  five-figure accuracy could  be 

attained. 

With such a simple example,  it is quite readily seen why the order 

of integration makes so much difference.     If the inner integration 

were done analytically,   equation  (1.1)   would  become 

I = J Jl - y dy 
0 

while (1.2)  would  become 

(1.3) 

1 = 5   (1  - x^dx. 
0 

(LA) 

Theoretically,   (i.e.,   except for round-off),   Simpson's  rule should 

give exact results   for  the  problem of integrating   the polynomial 

G(x)   E 1  - x      over the  interval     [0,1].     On  the other ha;i,   the 

function    H(y)   =«/l  - y    may not be approximated  very accurately by 

portions  of cubic   polynomials   (because  it has  an infinite  slope at 

y = 1).     Simpson's  rule should not be used  for such a quadrature; 

instead  a special  formula should be used which takes  into account 

the nature of the singularity in    H'(y). 



Example 2.    Consider the Integral 

J = i1 r?\-£—<j?Ti\ 
-1     f,   2/ /7F~    2 ) -vl-x   wt   + x 

dtdx. (1.5) 

Geometrically,  the symmetric, non-negative integrand is being integrated 

over a circle of radius     1.    The integration is easily performed 

analytically,  and  it is  found  that    J = n.     if one considers  this as 

a repeated simple integral, and  if a twelve-point Gauss quadrature 

formula is used in  the intervals     [-Jl  - x.,Jl - x.],j  = 1,2,...,12 

for the inner integrations and in the interval    [- 1,1]     for the outer 

integration  (so that  the  integrand has  been  evaluated  at 1UU points  in 

all),  the result 3-1^0 is obtained;  the error is +  .002^..    If thirteen- 

point Gauss  formulas are used   (so  the integrand has been evaluated 169 

times  in all),   the  result 3.1379  is  obtained;   the  error is   -   .0037. 

One might surmise  that a reason  for the  very inaccurate  results 

might be that the integration with  respect  to    t    has not been done 

very accurately when    x    is close  to  zero.     For example,  when    x = 0, 

it  is desired  to integrate     |2tj     which has  a discontinuity in  the 

derivative when    t ~ 0.     Thus,   one expects better results  if he  evaluates 

numerically 

2 5 
0 

1-x 

ins tead of 

■x2 

2 -x 

I— + 7?T 7I dt 

Vt     +  X 

(1.6) 

+   Vt2 + x2   I di. 



If six-point Gauss formulas are used for the integrals  (1.6), 

(equivalent again to the use of 1AA points  over the whole circle),  the 

final  result is  3.1i37.    The error is  now    +.0021 (as opposed to    +.0024 

for the 1UA point case before), so the error is still more  than expected 

for the integration of "smooth"  functions. 

Much more accurate results are obtained if one uses the ordinary 

Gauss quadrature formulas for performing the t integration and then 

uses  the generalized Gauss  formula 

J   Jl 
-1 

x^ f(x)dx = H1f(x1)   + H2f(x2)   +•..+ H12f(x12) (1.7) 

for the  outer quadrature.     Here    x.   = cos j^   and     H.   = r?r sin    =-=- 

for    i = 1,2,3,. ..,12.     The  final  result using  this   formula is 

J - 3.1A1630.     The error is  only    +.000037. 

Gomments on the results;    It is often stated  that if a double integration 

problem is symmetric  with respect  to  the two independent variables,   one 

should  "treat both variables   the same".     Then why does   the use of ordinary 

Gauss  integration in both directions yield such poor results,  and why 

are results  improved  so much by using.a different  formula  for the    x 

integration?    The answer presents itself when the    t    integration is 

actually performed analytically.    The result is 

5   "'X     i     -j +7t2 + x2  i dt = 2^1 - x2. 
f,     2   I    /.2 ""    2 ) Wl-X \/t     +   X 



s1^ Thus we now wish to evaluate    2 $    Jl - X* dx,     the integrand  of which 
-1 

has infinite slopes at    x = + 1.     The twelve-point ordinary Gauss 

formula gave better than four-place accuracy when the    t    integrations 

were performed,  and  the results were of course good approximations  to 

vl  - x  .    The generalized Gauss  formula will evaluate    5   vl - x    dx 

exactly, so it does a good  job of integrating  the "good approximation" 

to A 2 «yi - x . 

Hence,   for a symmetric   problem,   it  is  often not  really possible 

or desirable  to treat both variables  "the same"  when multiple  inte- 

gration is  performed by iterated use of one-dimensional  formulas. 

The choice  of a particular' variable,  with  respect to which  one 

integrates   first,   ruins   the symmetry of  the problem.     (These  remarks 

do not apply if the  region of integration  Is  a  rectangle.) 

a    a 
52.    Singular integrals  of the type    1=5    5 F(*>y) dxdy. (2.1) 

-a -a     / 2   .     2 

Here  it will be assumed   that     F(x,y)     is   analytic  in   the square 

- a < x, y < a    and  that     F(0,0)   / 0.    The difficulties  illustrated  in 

§1 with problems  in which  the  original  integrand was  always  finite and 

continuous  should  lead  one  to expect that even more care  is necessary 

in  the use  of numerical methods when  the integrand  is  infinite at 

some point. 

Theoretically,   if    y / 0,     the  integration with  respect to    x 

could be carried  out with a standard non-singular formula like Simpson's 

rule.     This  would give an approximation  for 

G(y)  = j 
/ 2 ^    2 Vx    + y 

dx. 
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Since    F(x,y)    la analytic in    - a ^ x < a,  - a < y < a,    it may be 

expanded in a Taylor series (vith respect to    x), so that 

2 2 
F(x,y)   - F(0,y)   - xFx(0,y)  = fj- (F^O.y)   + ^ F^O.y)  +•••} = fp H(x,y) , 

where    H(x,y)    will also be analytic in the square.    Assuming still 

that    y / 0, G(y)     may then be written 

G(y)   = F(0,y)   5 
dx 

-a     /TT    2 Vx    + y 

+ F (0,y)   5 xdx        + i 5a   x2H^>y) dx    (2.2) 
-a     7 2^2      ^    -a     12,    2 vx    + y -Jx.   + y 

or 

G(y)  = F(0,y)  In 
'/ 2 j.    2   . Vy    + a    + 

/T"    2 Wy    + a    - a_ 

+   1   5
a   x2H(x,y)dX) (2.3) 

(since the second Integral in (2.2)   is  zero because the integrand is 

an odd function of    x) . 

The integral in (2.3)   is obviously a continuous  function of    y 

which will approach a finite limit when    y -*■ 0.    The first term in 

(2.3)   is also a continuous function of    y    if    y ^ 0.    But at    y = 0 

this  term is logarithmically singular.    That is,  (since    F(0,0)  = constant/ 0) , 

limit 
y>0 

Wy2 + a2 + a)   - Wy2 + a2 - a)   F(o> 

i^FI 

= limit 

y) 

- - 2F(0,0). 

/ 2 ^    2   . /"FT    2 _«yy    +a    +a       ^y    +a-a 

F(0,0) 



Thus G(y)  may be written in the form g(y) ln|y|, where g(y)  will 

remain finite throughout [- a,a] if 0 < a < 1. The problem of per- 

forming the cubature of (2.1) has now been reduced to that of performing 

the two quadratures 

g(y) = i^FT 5 
F(x.y) 

12.     2 
K/X + y 

-dx (2.A) 

and 

I = 5 ln|y| g(y)dy. 
-a 

(2.5) 

Theoretically, for example, the standard Gauss formula or Simpson's 

rule could be used to approximate (2.^) when y ^ 0. A generalized 

Gauss formula with weighting function In |y |  may then be used to 

approximate (2.5). (For such a formula, see Appendix l). Methods of 

this type have been used successfully, but here also it is easy to 

overlook some difficulty which will cause large errors in the result. 

Consider the special example: 

1    1   ,   .     2   ,'    2 
Example 3; I3 = 5    i    ^ + x    "^ P-dxdy 

0    0 /TT    2 s/x    + y 

This integral is essentially of the type  (2.1).  Since the integrand 

is  symmetric  in    x    and    y    the  two lower limits were  taken as  zero. 

Equations   (2.5)   and   (2.^)   for  this  problem would  be 

lo = i    ln|y|  g(y)dy 
.   0 

(2.6) 
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- 

• 

where • 

«w' skr l14 4/f ^ "'• J-niy|  0            2        2 
■s/x    + y 

(2.7) 

The four-point generalized Gauss  formula 

I3 S H1g(y1)  + H2g(y2)   + H3g(y;3)   + H^gCy^) 

where Hl = - .383^068 ^i = . 0^1^48-i80 

H2=- .386875318 ^2 = .2^527i9U 

H3=- .190^35127 y3 = .556l65-i5A 

H^=- .039225/487 ' yA = .8Ä8982395, 

was used  to evaluate  the  integral  in  (2.6).     (The necessary values'of 

g(y)   were obtained   previously by using on  ordinary  four-point Gauss 

formula applied  to  the integral  of  (2.7))..    The  resulting  approximate 

value  for    I„    was     7.58863.     The integral     I-    may of course be 

evaluated  analytically,  and   the.result is 

I = j{25 ln(l +s/2)   .+ ,72}   = 7.816186. 

The approximate  result was   too  low by about     0.23.     If we  had  not 

worried  about  the singularity at all,  and  had  merely used' the  regular 

four-point Gauss  formula  for both the    x    and    y    integrations,   the 

result would have been    7.7219»   which  is   too" low by only about    0.09. 

Comments  on  the  results;       The  question,   of course,   is why better 

results  are  obtained when  one ignores   the presence of the  singularity 

completely  than if  formulas   (2.6)   and  (2.7)   are used.     The main  reason 
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is that in"taklng care of" the singularity at y = 0, a new singu- 

larity was introduced at y = 1. When using a generalized Gauss formula 

to evaluate (2.6), it is assumed that g(y) may be approximated 

reasonably well by a polynomial. However, equation (2.7) shows that 

g(l) = ", so the generalized Gauss formula should not have been used 

to evaluate (2.6); to use it was a definite error in reasoning. The 

example was given here however to emphasize that such errors will 

often not show up when the problem is placed on the machine unless 

the exact answer is known.     ;_ ... 

The integral I_ could have-been approximated better by treating 

a smaller region about the singularity as a singular problem and by 

using standard quadrature formulas In the region away from the singu- 

larity. This' correct use of formulas analogous to (2.6) and (2.7) is 

shown in the evaluation of the Integrand of Example 3 over a smaller 

region: •    • 

Example 4.; Iy  = ^     $ MA-+X2
+ 

^      0.    0 /ITT    2 Vx    + y 

-dxdy. 

This  integral may be  evaluated  exactly and   the  result is 

I, = ^UZ + 385 ln(l  + N/2) ]  = 1.7747034. 

If the singularity is   ignored  and an  ordinary four-point Gauss 

formula is used,-for both    x    and    y    integrations,   the resulting value 

is • 1.7511    which is   too low. by about     .0236. 
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If one desires to perform the cubature as an Iterated quadrature 

(but making use of the fact that the integrand determined by the inner 

Integral has a logarithmic singularity at y = 0), the specific formula 

will be 

I, = 5 Iny g(y)dy, 
4  0 

(2.8) 

where 

1_ ,-■*■ 4 + x2 + 
y g(y) = T^F T ^z^-i- (2.9) 

The generalized four-point Gauss formula needed for this problem is of 

the form 

5 Iny g(y)dy = H1g(y1) + H2g(y2) + H^ty^ + H^y^). 

The abscissas y.  and the weights H.  are given in the table of 

Appendix I. Using this fonrrula (and using ordinary four-point Gauss 

quadrature formulas for approximating each functional value g(yj))> 

one obtains the value 1.7728 for I., which is only in error by 

about 0.0019 • 

Comments on the resultst The fact that the error 0.0019 (incurred 

when the presence of the singularity is considered) is only about 

eight percent of that incurred when the singularity is ignored is 

encouraging.  However, the more accurate method is also subject to 

criticism. Should the ordinary Gauss formula be used to evaluate 

(2.9) for the various desired values of y? It is true that for 

y / 0 there is no singular point in 0 < x < ^-j but as y becomes 
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very small the function 

A + x2 + y2 

/ 2 .  2 

begins to have a graph whose shape is more like that of the function 

A + x2 

* .    Thus numerical results  assuming 

■   . ^ + x2 -f y2 

n~7 
may be approximated by a polynomial in 0 < x < 7 are not very good 

~- — it      .    '   ■ 

if   .y    is  very close to zero.    It would seem that a similar criticism' 

would probably apply to any method of evaluating the singular double 

integral by an iterated numerical quadrature. 

The other possibility is to set up a single two-dimensional 

formula for numerical integration of 

h    h 
1 = 5   5 fez) 

0   0    /TT  2 s/x    + y 

dxdy, (2.10) 

(where F(x,y) is assumed to be analytic in 0 < x < h, 0 <" y < h, 

and where F(0,0) / 0). An extremely simple symmetrical formula of 

this type is of the form 

I = a F(0,0) + b(F(0,h) + F(h,0)) + c F(h,h), (2.11) 

where  the coefficients    a,b,  and     c    are determined   (by the method  of 

undetermined  coefficients)   so that the  formula is  exact if    F    is 

any polynomial which is linear in both the    x-andry    directions..   That 

is,   formula  (2.11)   is  to be  exact if    F(x,y)   = c.   + c_x + c_y + c.xy. 



u 

Since the last function is linear, it is only necessary to require that 

formula (2.11) be exact if F(x,y) = 1, if F(x,y) = x, if F(x,y) = y, 

and if    F(x,y)  = xy.    If    F(x,y)  = 1,     the requirement is 

h    h        ,   , 
a + 2b + c = 5    5 7       = 2h lnCs/2 + l). (2.11a) 

o o   rrr 2 ■Vx  + y 

If    F(x,y)   = x,     one obtains 

hb+hc=5     5       xdxdy     = lhZkrZ-l + lnl/2 + 1)]. (2.11b) 0    0     J7T7 .   : 
If    F(x,y)   = xy,     one obtains 

h2c = 5
h ^    ^ydxdy    = 2 h3{^ _ 1); (2>llc) 

0 0 JJT,2 

If    F(x,y)   = y,    because  of symmetry the same  equation is  obtained as 

was  obtained when     K(x,y)   = x.     Solving  for    c,b,     and    a, 

.    .       c  = I h(s/2 r 1) 

a = 2b = j h[3  ln(l +.S/2)   -s/2+1]. 

Hence, formula (2.11) may be conveniently written 

I = h[.276142375 F(h,h) + .37l651200(F(0,h) + 2F(0,0) + F(h,0)')].  (2.12). 

In a similar manner, a symmetrical nine-point formula of the type 

I = a F(0,0) + b[F(0,|) + F(|,0)] + c[F(0,h) + F(h,0)] 

+ d[F(|,h) + F(h,|)] +e F(|,|) + g F(h,h) (2.13) 
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may be obtained, which will be exact for any polynomial of the form 

2      2      2       2     2 2 
F(x,y) = cn + c1x + c2y + c,xy + c.x + c5y + c,x y + c7xy + crtx y '0        1 J8' 

The coefficients turn out to be 

a = ^[11 ln{j2 + 1)   -N/2] 5   .276029863h 

h -   h' 
30[13 In^ + 1)   - 23s/2 + 30]  =  .297698157h 

c = j-filn(ff2 + 1)   - 11N/2 + 15] - .010ß3U47h 

d = ^[3 ln(s/5 + 1)   + 7s/2 - 10]  =  .08A787190h 

e = ^[24. In(.y2 + 1)   + 56 s/2 T 80]  =   .678297519h 

■     g = ~[- 9. ln(*/2 + 1)   rs/2 + 10]  =  .021780805h. 

For different point configurations  it is  often possible  to derive 

formulas   of this   type..     For  example,   the seven-point  formula 

I = AF(0,0)  + B[F(0,|)   + F(|,0)]  + C[F(0,h) .+ F(h,0)]  + DF(|,|)   + EF(h,h)     (2.U) 

■ where 

.A = ^-[5  ln(l +J2)   + Jz - 2]  =   .3l8/i23458h    - 

B = ^[U ln(L +J2)   - 12j2 + 16]  =   .212910967h 

•E = 

= j^[ln(l +*/2)   - 3.72 + 4], =  .0532277/i2h 

= —-[3 ln(l +V2)   + 7N/2 - 10]  =  .8ii787l899h 

^•[-3 ln(l +J2)   +,J2 + 2]i  .06iil7U0Oh, 

is  exact if    F(x,y)     is any polynomial of the  form 

F(x,y)   = CQ + c^ + c^f + c^xy + c.x    + c5y    + c6xy    + c-x y. 
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From the way the coefficients in formulas (2.13) and (2.14.) were 

obtained, It is obvious that both formulas would give exact results 

for the test problem of Example U-    A new example is therefore consideredt 

Example 5; 15 = 5   5 
,i > J^-y 2. 2 

0 0    nr~ 2 s/x    + y 

dxdy. (2.15) 

The integration here can probably not be performed analytically. 

However, upon changing to polar coordinates, it is  found that 

= 2 rAe^ec e 

0 
dö-J, (2.16) 

and this non-singular integral may be evaluated .quite accurately by 

ordinary Gauss formulas, Simpson's  rule,   or similar formulas.     In Table 2 

(on the next page),   the results  of applying various  types of formulas 

for the numerical evaluation of the integral in (2.15)  are listed. 

Comments on the results;     (l)   The last case (in which the singularity 

was ignored)  was included merely for comparison.    When ordinary Gauss 

formulas for integration of non-singular integrands are applied like 

this  to the Integration of non-negative singular integrands,   it often 

happens  that the expected poor "answers"  are much too small.     (2)   Since 
/ 2+ 2 

the function    e^      ^      is strongly concave upward,  it is  to be expected 

that formula (2.12)   (which uses  only the  four comer points and which 

assumes the function is linear between them), will give results which 

are much too large.    The results using this four-point formula are 

worse than those, obtained by using the sixteen-point formula which 

ignores  the singularity.    This illustrates  the obvious  fact that a low 
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Correct Value:       (obtained by accurate evalua- 
tion of the integral in 
(2.16)) 

4-point process:     Cubature formula  (2.12) 

7-point process:     Cubature formula (2.1A) 

9-point process:     Iterated 3-point Gaussian 
quadrature assuming logarithmic singularity 
in the integration with respect to    y;   (a 
set-up like formulas  {2.A)  and (2.5)  with 
lower limit zero) 

9-point process:     Cubature formula  (2.13) 

16-point process:     Iterated  /-point Gaussian 
quadrature assuming logarithmic singularity 
in  the integration with respect to    y;   (a 
set-up like formulas  (2.4)   and  (2.5)   with, 
lower limit zero) 

16-point process: 
in Appendix 11 

Cubature formula (II-3) 

16-point process: Iterated 4,-point ordinary 
Gaussian quadrature ignoring the presence of 
the singularity completely 

5-place Value Error 

.509626 

.5227ii .01311 

.51021 .00058 

.50865 

.51081 

.509^0 

.51011 

.50373 

.00098 

.00118 

.00023 

.00048 

.00590 

Table  2  - Results  of Numerical Integration  of    I, 

order formula should not be used  over a large  region.     Generally, 

formula  (2.12)  would  only be used in a small region around  the singu- 

larity;  ordinary  formulas   for evaluation of non-singular integrals  may 

be applied  over  the remainder of the  region.     These remarks  apply also 

to somewhat higher order  formulas.     The meaning  of "small  region about 

the singularity"  will depend  on how widely     F(x,y)     varies  in  the 

region.     Intuitively,   one asks   the question:     "May-  F(x,y)     be approxi- 
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mated reasonably well In this region by a polynomial of the degree 

for which the formula Is exact?" (3)  The fact that the 7-point 

cubature formula gave better results than the 9-point qubature formula 

probably occurred only by chance. {A)    In comparing the Iterated 

quadrature methods used in this example with the cubature methods 

of formulas (2.13) and (II-3) of Appendix II, it. should be noted that 

the following considerations will have a lot to do with the accuracy 

of the results: 

(a) As mentioned before, the Gaussian iterated quadrature 

method suffers from the fact that near one end of the 

y-interval, the x integration may be considered to be 

"hear singular", although we go ahead and use ordinary 

Gaussian quadrature anyway. 

(b) Formulas (2.13) and (11-3) are "equally-spaced" formulas, 

and such formulas do not have the accuracy that generalized 

Gauss formulas possess; that is, they are not exact for 

polynomials of as high a degree as is a corresponding Gauss 

type formula using the same number of points. 

.For this particular example, it is seen that the iterated quadrature 

methods turned out to be slightly better than the cubature method 

in both 9-point and 16-point cases.  On the other hand, the cubature 

formulas (2.14.) and (II-3) are somewhat easier to use. This is 

especially true in the application of the formulas in the numerical 

solution of integral equations; in this case, a factor in the inte- 

grand contains the unknown variable, and it is usually much more 

convenient to use an equally-spaced formula than one with any other 

spacing. 
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§3«    Singular Integrals  of the type 

h    h "    n <-= s- 
1=55    InJx    + T    F(x,y)dxdy 

0    0 

Here it is assumed that F(x,y)  is analytic in the region 

(3.1) 

and that    F(0,0)  ^0.     In a manner analogous  to that used in paragraph 

2,   equally-spaced cubature formulas may be derived.     In Appendix III, 

four-point,  nine-point, and sixteen-point formulas of this  type are 

listed.     It is  to be noted that the coefficients  in these formulas 

will always be negative if    h    is in the range     [O,^   s/2]    which was 

specified.     (Intuitively,   one wishes  for practical use  to rule out 

any  formulas which have some negative and  some positive coefficients.) 

A good  example  of a problem of type  (3.1)   in which    F(x,y)     is 

not a polynomial and   for which  the exact solution  is  known has  eluded 

the author.     In  the  absence of such a  test problem,   the  following problem 

was  considered: 

h    h 
Example 6: J = 5    5    In s/x    + y    cos(5xy ) dxdy (3.2) 

0    0 

For various  values  of    h,     the formulas  of Appendix III  were  tried 

on  this   problem.    Also,  high order iterated  Gaussian quadrature  (com- 

pletely  ignoring  the  singularity)   was   tried.     The  results  of  evaluating 

-J     by  various   formulas  are given in Table 3. 
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4-point formula 
(III-1) 

9-point formula 
(III-2) 

16-point formula 
(III-3) 

9-point formula 
(ignoring singularity) 

64.-point formula 
(ignoring singularity) 

256-point formula 
(ignoring singularity) 

h = 0.1 h = 0.2 h = 0.3 h = 0.5 h = 1.0 

.02670606 .079065 .U12 .256 .36 

.02670611 .079095^2 .1U^21 .2635 .3855 

.02670611 .07909538 .UU19 .263395 .3.900 

.02673 -0792 iUl6 .26^ .39^ 

.026707 .079099 .ÜU3 .263A55 .390973 

.02670617 .07909569 .UU21 .263A37 .390900 

h h /~2—2 2 Table 38    Results in numerical integration of    - 5  5 Inv/x +y    cos(5xy )clxiy 
0 0 

Comments on the results:     (1)  Although the exact results are not knovn, 

enough work has been done with this  problem so that it is  felt that we . 

at least know when the "answers"  are obviously quite a bit off.     For 

example,  then, when it was  felt that the "answer" was certainly good 

to no more than three significant figures,  only this many figures were 

listed in the table.     (2)   One notes  that the three cubature formulas 

(111-1,2,3) give essentially the same results  for    h = 0.1.     For larger 

values  of    h,  the four-point formula soon begins  to give noticeably 

poorer results.     (The function    F(x,y)  = cos(5xy )     cannot be approxi- 

mated very well in an interval    0 <      < h    if    h    is more than    0.1    or 

0.2.)     However,  the nine-point formula and the sixteen-point formula 
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give quite comparable results  for    h = 0.3•     For    h = 1.0,    none of 

the three cubature formulas should have been used.     They were derived 

assuming    h < j>j2,    and when one uses  them for    h = 1.0,    the coefficients 

in  the formula are not of one signj  of course,   the weighting function 

/
r2        2 

In N/x    + y      is not always non-positive either if in part of the region 

x2 + y2 > 1,   (which will happen if    h > i-v/iJ) .     (3)     The formulas used 

to obtain the results  in the last three rows  of the Table were ordinary 

Gaussian quadrature  formulas  applied  to both     x    and    y    integrations. 

For example,   for the last line,  sixteen-point Gauss   formulas  were used 

for each quadrature.     Instead  of our problem,.if one were  trying  to 

evaluate 
w    h •     ■ 

2v 
h    h 

5     5    cos(5xyt)dxdy,    . 
0    0 

even  the nine-point formulas would give  excellent- results  for the 

smaller values of    hj and  the 64.-polnt and • 256-polnt formulas would 

have given excellent results- for all values   of    h    listed.     But when 

One  tries   to apply these  formulas  when  the integrand  has  a singularity, 

the  results   (as  expected)   are  not good.     For example,   for    h = 0.3, 

the  256-point  formula Ignoring  the. singularity gives   the same  results 

as   the nine-point cubature 'formula  (III-2).  • 

§A.■   It is  hoped  that the  preceding  examples  will cause  programmers 

to look carefully at any  integral  they wish  to evaluate before deciding 

what integration  formula  to use on  the computer. 
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Formulas similar to those listed in the three appendices may be 

derived for many other specific problems. It is certainly possible 

to set up a machine program for deriving such formulas. Such a program 

would, however, usually require multiple precision arithmetic. For 

example, for the sixteen-point cubature formula (II-3), it was necessary 

to solve ten linear equations for the ten unknown coefficients in the 

formula, and these equations are quite ill-conditioned.  For the four- 

point formula (ll-l), the actual equations were listed earlier in this 

document (equations (2.11a),(2.11b), and (2.11c)). This particular 

system is already in triangular form, but it will not be true in general. 

From equations (2.11a) -(2.110), one sees that another difficulty 

in deriving formulas for specific integration problems might very well 

be in the evaluation of the integrals analogous to those on the right 

in equations (2.11a) -7 (2.11c). 
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Appendix I 

Table of Abscissas and Coefficients In  the Generalized Gaussian Formula 
h n 

5 in x F(x)dx =    S HiF{xi) 
0 1=1 

A description of how to derive these formulas Is given, for 

example, In Kopal1 or Mlneur8. The function F(x)  Is assumed to 

have 2n continuous derivatives in [0,h], where h < 1. The fact 

that the Integral only exists as an improper integral does not have 

any effect on the method of derivation, but it does limit the choice 

of methods of deriving simple error expressions. 

The basic idea is that the formula 

h n 
5 In x F(x)dx = S H, F(x,) + R (1) 
0 1=1 ^^  ^^    " 

is derived so that the remainder term    R      is   identically  zero if 

F(x)     is  any polynomial of degree no more than    2n - 1.     In  the  table 

below,   the proper values  of the abscissas    x.     and  the corresponding 

coefficients     H.     are given  for various   fixed  values   of    h    and    n. 

The  Hermite  representation  for    F(x)     in  the interval     [0,h] 

using  the base points     x,,x„,...,x      is   (see Steffensen3) 

n 
,2 F(x)   =    S  [ti(x)]2rF(xi)[l  - 2(x  - x^Cx^]   +(x - x^F'^)] 

"IM + F(2?)J^)]     TT(X-X.)2 (11) 
j=l 
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where 

and vhere 0 < ^(x) < h. 

Since the sum in equation (ii) (which will be designated as 

Q_ ,(x)) is merely a polynomial of degree 2n - 1, and since F(x) 

is continuous, it follows that F^  [^(x)] is a continuous function 

of x. Substitution of equation (ii) into (i) then gives an expression 

for    R 

Rn = Jhln - *2*-lMA* + I1* x ^(l^   ^ ^ - ^2dx 

n n F^Wx.)]     n 2 
-^ »i^-i^i^ - ^ Hi —räHyi—. TT K - xP • 

The product in the last term is zero; the first integral is equal 

to the first sum because the formula was originally derived to be exact 

for polynomials of degree (2n - l) or less. Thus 

?(2n)U(x)]  n 
R = 5 In x 

,(2n)i 

Un)« 
TT (x - x.)^dx. 
j=l     J   . 

Since F   [t(x)]  is continuous and since the other factor in the 

integrand is always negative, one may use the mean value theorems 

applied to the improper integral to obtain the formula 

n 
T ^ = n^*hlnx jru-Vdx 
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where 0 ^ C ^ h. The Integration here may be carried out in closed 

form, and for any particular values of h and n a numerical value 

of the coefficient of    r2"'«^    could be obtained if desired. 

Abscissas and coefficients  for the formulas are given in the 

following tables. 

h n 
5 In x F(x)dx =    2 H, F(x.) 
0 i=l   • 

Two-point formulas 

H. 

Three-point formulas 

x, H, 

h=   .1 
.0i7 065 3648      -.188 936 512 
.076 3U0 9A57      -.Ul 321 998 

.032 526 740        -.309 155 272 
h =   .2 .151 048 729 -.212 732 310 

.039 827 506        -.358 810 887 
h =  .25       .187 818 171        -.237 762 703 

.046 866 292 
h =  .3        .224 159 419 

.060 185 480 
h =  .4        .295 361 084 

.072 495 937 
h =  .5        .364 106 635 

.098 332 529 
h =  .75      .517 865 507 

.112 008 806 
h = 1.0      .602 276 908 

.403 476 458 
•257 715 384 

.480 899 476 

.285 616 817 

.545 589 256 
•300 984 334 

.664 069 402 

.301 692 152 

.718 539 319 

.281 460 681 

.009 038 5371 

.046 848 5242 

.087 717'3234 

.017 311 2632 

.092 032 2473 

.174 760 3835 

.021 252 272 

.114 098 280 

.218 033 359 

.025 076 930' 

.135 810 533 

.261 119 549 

.032 395 246 

.178 113 942 

.346 625 133 

.039 281 165 • 

.218 757 540 

.430 968 225 

.054 430 334 

.310 616 188 

.631 807 628 

.063 890 793 

.368 997 064 

.766 880 304 

-.117 704 182 
-.139 364 134 
-.073 190 193 

-.197 105 695 
-.217 367 372 
-.107 414 515 

-.230 944 257 
-.247 084 847 
-.118 544 486 

-.261 970 538 
-.272 407 593 
-.126 813 710 

-.317 275 288 
-.312 698 376 
-.136 542 629 

-.365 307 501 
-.342 191 529 
-.139 074 559 

-.460 263 416 
-.382 620 062 
-.122 878 077 

-.513 404 552 
-.391 980 041 
-.094 615 407 
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h = .1 

h =  .2 

h = .25 

h = .3 

h = .4 

h = .5 

h = .75 

h = 1.0 

h n 
5  In x F(x)dx =    X H. F(x.) 
0 i=l ^^      1 

Four-point Formulas Five-point Formulas 

xi Hi xi Hi 

.005 579 3787 

.030 456 8106 

.065 083 2445 

.092 564 6649 

-.080 432 5170 
-.112 913 0245 
-.092 721 2481 
-.044 191 7197 

.003 785 3873 

.021 146 0155 

.048 016 9933 

.075 741 5540 

.095 035 7147 

-.058 679 2293 
-.090 010 3886 
-.067 763 4421 
-.064 349 1963 
-.029 456 2529 

.010 730 0607 

.059 732 9846 

.129 046 5053 

.184 800 1041 

-.136 781 961 
-.180 961 542 
-.140 154 911 
-.063 989 169 

.007 303 6269 

.041 473 7959 

.094 989 2687 

.150 759 6325 

.189 888 8128 

-.100 898 343 
-.147 093 364 
-.136 215 523 
-.C95 367 634 
-.0/.2 312 718 

.013 199 0687 

.074 022 3111 

.160 649 9113 

.230 795 6060 

— 161 254 261 
-.208 196 736 
-.156 984 793 
-.070 137 800 

.008 997 7473 

.051 405 8244 

.118 143 6743 

.188  016 1836 

.237 247 4844 

-.119 469 913 
-.170 6a 071 
-.154 482 727 
-.105 790 569 
-.046 189 311 

.015 605 5281 

.088 086 1632 

.191 986 7991 

.276 698 6323 

-.183 944 963 
-.232 212 713 
-.170 544 383 
-.074 489 782 

.010 653 955 

.061 191 357 

.141 073 659 

.225  090 424 

.284 554 707 

-.136 8.18 022 
-.191 814 948 
-.169 924 693 
-.113 791 218 
-.048 842 960 

.020 242 153 

.115 524 836 

.253 774 725 

.368 171 418 

-.225 038 822    • 
-.272 635 015 
-.189 937 617 
-.078 904 839 

.013 860 195 

.080 323 520 

.186 217 509 

.298 616 333 

.378 983 205 

-.168 565 160 
-.228 532 902 
-.194 139 340 
-.124 050 550 
-.051 228 341 

.024 650 669 

.141 985 961 

.314 166 312 
i459 053 527 

-.261 493 609 
-.305 065 815 
-.201 254 116 
-.078 760 050 

.016 929 963 

.098 846 742 

.230 289 847 

.371 122 736 

.473 080 262 

-.197 115 290 
-.259 304 126 
-.211 378 918 
-.128 274 873 
-.050 500 383 

i034 597 958 
.202 794 754 
.455 812 835 
.680 823 438 

-.336 501 008 
-.360 747 058 
-.204 766 138 
-.063 747 351 

.023 968 326 

.141 941 301 

.334 012 731 

.544 908 302 

.705 185 931 

-.257 348 518 
-.316 979 130 
-.232 815 086 
-.120 066 808 
-.038  552 012 

.041 448 480 

.245 274 914 

.556 165 454 

.848 982 395 

-.383 464 068 
-.386 875 318 
-.190 435 127 
-.039 225 487 

.029 134 472 

.173 977 213 

.411 702 520 

.677 314 175 

.894 771 361 

-.297 893 472 
-.349 776 227 
-.234 488 290 
-.098 930 459 
-.018 911 552 
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h =  .1 

h =  .2 

h =  .25 

h =  .3 

h =  .A 

h = .5 

h 
^ In x F(x)dx = 
0 

n 
2 H.F(x.) 

i=l 1      2- 

Six-point Formulas 

x.                                 H. 

Seven-point Formulas 

x.                                 H. 
l 

.002 737 2522 

l 

-.044 867 1463 

1 

.002 072 1068 

1 

-.035 527 6951 
.015 A69 6555 -.072 651 9894 .011 784 1174 -.059 663 9342 
.036 303 1065 -.077 680 9568 .028 206 4839 -.067 568 1217 
.060 487 2300 -.067 222 4997 .048 553 9795 -.063 982 2229 
.062 296 5498 -.046 834 4688 .069 244 2584 -.032 329 9697 
.096 456 8465 — 021 001 4482 .086 559 5443 -.035 470 0066 

.097 346 5800 -.015 716 5571 

.005 295 0647 -.077 799 6177 .004 016 8810 -.062 016 4469 

.030 357 5278 -.120 458 4218 .023 141 2079 -.100 038 5777 

.071 748 1227 -.123 092 4025 .055 729 0893 -.108 818 0112 

.120 160 3044 -.102 007 6953 .096 347 1971 -.099 062 9590 

.164 114 1637 -.068 577 9746 .137 872 9565 -.078 139 9389 

.192 802 6065 -.030 Oil 4705 .172 790 5153 -.051 433 2069 
.194 620 7986 -.022 378 4418 

.006 530 9449 -.092 422 0578 .004 959 0934 -.073 862 5772 

.037 641 3068 -.140 584 7603 .028 704 7253 -.117 287 7392 

.089 209 6762 -.140 908 2984 .069 288 9353 -.125 452 0207 

.149 727 1075 -.114 469 7378 .120 001 7469 -.112 217 0601 

.204 852 8015 -.075 514 5934 .171 977 8038 -.087 005 2591 

.240 934 2157 -.032 674 1424 .215 788 0211 -.056 429 8697 
.243 231 0509 -.024 319 0640 

.007 741 8903 -.106 154 737 .005 883 9101 -.065 033 5373 

.044 825 428 -.158 911 943 .034 197 4598 -.133 134 9773 

.106 499 312 -.156 404 554 .082 718  5014 -.140 190 7592 

.179 106 115 -.124 589 891 .143 492 1782 -.123 289 2070 

.245 466 855 -.080 676 771 .205 933 9771 -.093 948 6461 

.289 034 540 -.034 453 945 .258 698 4269 -.060 001 0805 
.291 820 9534 -.025 593 6338 

.010 094 293 -.131 473 543 .007 685 2606 -.105 745 899 

.058 898 892 -.191 288 667 .044 975 476 -.161 490 106 

.140 543 490 -.181 914 363 .109 178 862 -.165 181 407 

.237.247 089 -.139 293 045 .189 947 832 -.140 512 231 

.326 262 632 -.086 642 714 .273 347 751 -.103 282 880 

.385 122 046 -.035 903 961 .344 213 964 -.063 752 179 
.388 927 180 -.026 551 589 

.012 357 848 -.154 463 257 .009 425 1483 -.124 689 545 

.072 569 130 -.219 128 433 .055  472 574 -.186 293 354 

.173 810 761 -.201 672 708 .135 071 476 -.185 450 850 

.294 428 876 -.148 195 050 .235 614 042 -.152 577 010 

.406 333 465 -.088 009 317 .339 964 610 -.107 834 450 

.481 007 530 -.035 104 825 .429 209 778 -.063 915 195 
.485 902 001 -.025 813 186 

i 
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h = .75 

h = 1.0 

h =  .1 

h =  .2 

h =   .25 

h 
5 In x F(x )dx = 

n 
Z H.F(x,) 

0 1=1 1      i 

Six-poin t Fontiulas Seven-point Formulas 

Xi Hi xi Hi 

.017 606 007 -.203 816 913 .013 492 725 -.165 885 575 

.10A. 662 873 -.273 867 828 .060 287 312 -.236 580 830 

.252 5a 235 -.232 953 197 .196 665 459 -.221 087 185 
,431 126 B6J, -.152 443 361 .344 963 158 -.166 619 048 
.600 829 037 -.076 930 220 .500 96U 878 -.10A. 280 334 
.718 785 8U -.025 750 035 .637 433 036 

.727 073 965 
-.052 901 605 
-.018 406 978 

.021 634. 006 -.238 763 663 .016 719 355 -.196 169 389 

.129 583 391 -.308 286 573 .100 185 678 -.270 302 644 

.314. 020 450 -.245 317 U27 .246 294 246 -.239 681 873 

.538 657 217 -.142 008 757 .A33 A63 493 -.165 775 775 

.756 915 337 -.055 454 622 .632 350 988 -.068 943 227 

.922 668 851 -.010 168 959 .811 118 627 
.940 848 167 

-.033 194 304 
-.005 932 7870 

Eight-point Formulas 

.001 623 6190 -.028 901 5876 

.009 265 6696 -.049 825 3739 

.022 462 9083 -.058  678 5672 

.039 487 9968 -.058 818 6615 

.058  025 2058 -.052 495 3423 

.075 504 4191 -.041 603 7363 

.089 469 1394 -.027 737 3689 

.097 939 6237 -.012 197 8715 

.003 153 0217 -.050 725 2236 

.018  208  5251 -.084. 294 1729 

.044 381 3184 -.095 731 6168 

.078 310 8566 -.092 590 0626 

.115 A15 5869 -.079 862 3292 

.150 543 2585 -.061 395 6310 

.178 704 9274 -.039 965 9145 

.195 829  5772 -.017 322 6319 

.003 895 6151 -.060 541 1921 

.022 594 4803 -.099 185 5690 

.055 184 0243 -.110 975 3784 

.097 517 2457 -.105 675 7286 

.143 902 4230 -.089 725 6908 

.187 901 3513 -.067 964 3671 

.223 238 4836 -.043 706 0875 

.244 756 1390 -.018 799 5766 

[ 
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h = .3 

h = .A 

h = .5 

h = .75 

h = 1.0 

i                           n 
5 In x F(x)dx =    2 H, F( "i* 
0 1=1 1 j. 

Eight-point Formulas 

xi 

.00^ 625 5195 

Hi 

-.069 827 8231 
.026 928 2927 -.112 957 6094 
.065 886 9117 -.124 658 4226 
.116 587 3281 -.116 957 3535 
.172 2A5 0299 -.097 773 8166 
.225 U3 UUOU -.072 948 1768 
.267 7C9 U6A -.046 311 9302 
.293 668 7565 -.019 756 7069 

.006 050 2310 -.067 123 271 

.035 UUU 175 -.137 831 802 

.066 990 833 -.148 324 262 

.154 299 396 -.135 253 690 

.228 458 891 -.109 574 963 

.299 232 903 -.079 155 968 

.356 430 573 -.048 822 802 

.391 U3 600 -.020 429 534 

.007 430 4341 -.103 031 774 

.043 756 172 -.159 860 A55 

.107 670 933 -.168  066 490 

.191 382 639 -.149 070 656 

.283 944 674 -.116 669 061 

.372 678 364 -.081 404 215 

.444 772 010 -.048 471 625 

.489 128 485 -.019 779 292 

.010 677 906 -.137 975 753 

.063 512 116 -.205 495 866 

.157 081 786 -.204 954 207 

.280 413 715 -.169 505 437 
•417 959 377 -.121 017 620 
.551 576 813 -.074 576 282 
.662 404 789 -.036  421 023 
.732 473 320 -.013 615 167 

.013 320 244 -.164 416 605 

.079 750 429 -.237 525 610 

.197 871 029 -.226 641 984 

.354 153 994 -.175 754 079 

.529 458  575 -.112 924 030 

.701 814 530 -.057 872 211 

.849 379 320 -.020 979 074 

.953 326 450 -.003 666 4071 
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Appendix II 

h    h 
Cubature Formulas for    1 = 5    5        ^i?)   dxdy    where    0 < h < ~J2 

y 
0   0   ^j^T^2 

Four Point Forinula 

I = a^O.O)  + a2[F(h>0)  + F(0,h)]  + a^h.h)       where 

al = J^3 :Ln^1 +^ -«s/2 + 1] = .743 302 4.00h 

a2 = ^3 ln(1 +^ -N/2 + 1] = .371 651 200h 

a. = y< »/2 - 1) = .276 142 375h 

(II-1) 

The above formula is exact if F(x,y)  is any polynomial of the form 

c„ + c,x + c 2?  + OjXy- 

Nine Point Formula 

I = £.^(0,0) + a2[F(|,0) + F(0,|)] + a3[F(h,0) + F(0,h)] 

+ V^l'l) + a5^h'|) + F<|'h^ + a6F(h'h) 

where (when L = j^ ln(l +^)  and when S = "S^" and when K = g) 

a1 = 11L - S = .2760 29863h 

a2 = 13L - 23S + 6K = .2976 98157h 

a- = L - IIS + 3K = .0106 3iUA7h (II-2) 

a^ = 2AL + 56S - 16K = .6782 97519h 

a = 3L + 7S - 2K = .0847 87190h 

a6 = - 9L - S + 2K  = .0217 8oe05h 

The above formula is exact if F(x,y)  is any polynomial of the form 

2 2      2      2     2 2 c_ + c.x + CgX + c_y + c ,xy + c^x y + c^y + c„xy + c-x y . 
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Appendix III 

h    h r2—2 1 M 
Cubature Formulas  for    1 = S    S    F(x,y)   In Vx    + y   dxdy   where    0 < h < JN/2 

0    0 

Four Point Formula 

I = a1F(0,0)  + a2[F(h,0)   + F(0,h)]  + a^FCh.h)     where 

2 
al = S"^12 ln h + ^ ln 2 + ^ " 25]  = h2[|- In h -  .201 271 680] 

a2 = W^12 ln h + ^ ln 2 + A" - 19]  = h2[| In h - .076 271 680]       (III-1) 

2 

h' 

h; 
2rl a. = 2g.[12 In h + 12 In 2    - 9] = h^fi In h - .014 213 205] 

The above formula is exact if F(x,y)  is any polynomial of the form 

c0 + c^ + c2y + c-xy. 

Nine Point Formula 

I = 8^(0,0) + a2[F(|,0) + F(0,|)] + a3[F(h,0) + F(0,h)] 

+ ^F(|,|) + a5[F(h.|) + F(|,h)] + a6F(h,h) 

2 2 2 
where (when    H* = —57—   and    L = —73-^—   and    P = IT 

a1 = H» + 7L + 2P - 79K 

180 3SÖ and    K = 720' 

= h2[i- In h -  .065 313 206] 

- JZrl a2 = ^H»  - 2QL + 20P - UOK     = ITfjr In h -  .096 927 873] 

a, = H» - 17L + 8P - K 2r 1 = h*[x^ In h +  .002 960 3808] (III-2) 

= v,2r4 a, = 16H* + 112L + 32P - 624K = h^l^ln h - .156 122 407] 

a = 4H» + 28L + 8P - 116K = h2[i- In h + .016 524 954] 

a6 = H*  - 11L  - 16P + 137K        = h2[^ In h +  .008 292 4433] 

The above  formula is exact is     F(x,y)    "is any polynomial of the form 

2 2 2 2 2 2 c0 + c^x + c-x    + c_y + c.xy + c.x y + c,y    + c„xy    + CgX y  . 
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Appendix II  (continued) 

Cubature Formulas for    1 = 5    5       F^x>y^   dxdy   where    0 < h < i-s/S 0 0 JJ77 

Sixteen Point Formula 

I = 8^(0,0) + a2[F(|,0) + F(0,|)] + a3[F(f-,0) + F(0,^)] 

+ a4[F(h,0) + F(0,h)] + a5F(|,|) + «6[F(y,j) + F(|,^)] 

+ a7[F(h,|) + F(|,h)] + a8F(^,^) + ag[F(h,^) + F(^,h)] 

+ a10F(h,h) 

where (when L = ^L^ and S = ^ and K = ^ iSö 

aj^ = 28L - 292S + 236K 

a2 = 75L - U13S + 657K 

3360 

= .171 8U 675h 

= .209 487 987h 

1?8Ö; 

a^ = - ll^L  - 1170S + 1926K =  .026 000 525h (II-3) 

a, = - A9L - 65S + 5aK = .024 7U 850h 

= .U6 215 211h 

a6 = 405L - 3ii83S - 1053K      = .138  207 298h 

= .061  425 466h 

a8 = - 648L + 9720S - 648K = .135 840 492h 

a5 = 5184S - 2916K 

a_ = 18QL - 1548S - 468K 

a9 = - 63L + 1233S - 225K  = .037 996 448h 

a10 = 72L - 1720S + 572K = .013 151 648h 

The above formula is exact If F(x,y)  is any polynomial of the form 

CQ + C^X + CpX  + c_x  + 2     3      2      2 c^y + c5xy + c^x y + c7x y + Cgy + c^xy 

+ cloX2y2 + CiixJy 3V2 + W + c I3xy- + CUX' cV + o^y3. 
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Appendix III (continued) 

h    h y~2—2 1 i- Cubature Formulas for    1 = 5    5    F(x,y)   In Jx   + y   dxdy    where    0 < h < j-JZ 
0    0 

1 

Sixteen Point Forraulaa 

I = a^CO.O)   + a2[F(|,0)   + F(0,|)]  + ^[F^O)   + F(0,^)] 

+ ajF(h,0)   + F(0,h)]   + a5P(|,|)   + a6[F(^,|)  + F(|,^)] 

+ a7[F(h,|)   + F(|,h)]  + a8F(^-,äL)   + ag[F(h,^)   + F(^-,h)]  + a10F(h,h) 

h2ln h 
TIT 

a1 = H* - 13L - U? - 967K 

_ ti In 2 V.2 
h IT where (when    H» =      A/ and    L =    ^gg      and    P = jg^    and    K = ^^) 

2r 1 
= h  fe ln h "   •030 830 973^ 

a2 = 3H» + 27L + 81P - 12207K  = h2[^ In h - .06/4. A55 221] 

a = 3H* - 351L - loop + 18A11K = h2[A- In h - .00A 311 2601] 

a^ = H» - 139L - 67P + 9659K   = h2[^ In h - .002 970 4856] 

a = 9H* + 270L - 135P - 1215K = h2[^- In h - .163 651 202] 

a6 = 9H* + 513L + 59A? -  72333K = h2[^- In h - .023 045 066] 

a_ = 3H* + 198L + 279P - 32853K = hZ[X In h - .007 683 7845] 

ag = 9H* + 27L - 864P + 86913K = h2[^- In h + .012 148 911] 

a= 3H* + 63L - 126P + 11697K = h2[^- In h + .007 951 6953] 

a10 = H» - 66L + 117P - 10119K = h2[^ In h + .003 333 2599] 

The above formula is exact if F(x,y)  is any polynomial of the form 

2 3 2 3 2 2 
cO + 01X + C2X    + C3X    + cAy + c5xy + C6X y + C7X y + c8y    + 0QT 

22 32 3 3 23 33 + c10x y    + c^x-'y    + c^    + c13^r    + c^x y    + c^x'y   . 

(Ill-3) 
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